Ab-Initio and Experimental Study of the Electronic and Optical Properties of Layered 2D Molybdenum Disulphide

Authors

  • Siti Nabilah Mohd Halim Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Mohamad Fariz Mohamad Taib Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, 45400 Selangor, Malaysia
  • Siti Nur Fatin Zuikafly Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Husni Hani Jameela Sapingi Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Mohamed Sukri Mat Ali Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Hafizal Yahaya Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Fauzan Ahmad Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.37934/aram.107.1.1119

Keywords:

Molybdenum Disulphide, Density Functional Theory, energy bandgap, absorption spectrum

Abstract

Molybdenum disulphide (MoS2) in its two-dimensional (2D) mono- to few layers is applied in numerous photonic applications owing to its wide bandgap. In this work, the electronic and optical properties of monolayer MoS2 were successfully investigated by ab initio study through density functional theory (DFT) calculation and experimental work. A 2D monolayer MoS2 model was simulated using CASTEP in the framework of plane-wave pseudopotential. The simulated bandgap is 1.7 eV which is interestingly close to those determined bandgap of MoS2 prepared through the liquid-phase exfoliation method. This confirmed the successful formation of 2D layered MoS2 in the proposed fabrication process. The MoS2 model also predict well the experimentally derived absorption range which has a significant peak at around ~600 nm wavelength ascribed to the excitonic property.

Downloads

Download data is not yet available.

Author Biographies

Siti Nabilah Mohd Halim, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

siti.nabilah@graduate.utm.my

Mohamad Fariz Mohamad Taib , Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, 45400 Selangor, Malaysia

mfariz@uitm.edu.my

Siti Nur Fatin Zuikafly, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

sn.fatin@utm.my

Husni Hani Jameela Sapingi, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

husnihani@utm.my

Mohamed Sukri Mat Ali, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

sukri.kl@utm.my

Hafizal Yahaya, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

hafizal.kl@utm.my

Fauzan Ahmad, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

fauzan.kl@utm.my

Downloads

Published

2023-09-01

How to Cite

Siti Nabilah Mohd Halim, Mohamad Fariz Mohamad Taib, Siti Nur Fatin Zuikafly, Husni Hani Jameela Sapingi, Mohamed Sukri Mat Ali, Hafizal Yahaya, & Fauzan Ahmad. (2023). Ab-Initio and Experimental Study of the Electronic and Optical Properties of Layered 2D Molybdenum Disulphide. Journal of Advanced Research in Applied Mechanics, 107(1), 11–19. https://doi.org/10.37934/aram.107.1.1119

Issue

Section

Articles

Most read articles by the same author(s)