Study of Internal Flow with Deceleration in a Cryogenic Chamber Composed of Jet-Type Atomizers

Authors

  • Ian Arriaga Department of Electronics Engineering, Mechatronics Engineering, Faculty of Engineering, Universidad Peruana de Ciencias Aplicadas, Santiago de Surco 15023, Peru
  • Jasuo Sayán Department of Electronics Engineering, Mechatronics Engineering, Faculty of Engineering, Universidad Peruana de Ciencias Aplicadas, Santiago de Surco 15023, Peru
  • Julio Ronceros Department of Electronics Engineering, R&D Lab. in Emerging Technologies, Faculty of Engineering, Universidad Peruana de Ciencias Aplicadas, Santiago de Surco 15023, Peru
  • Mirko Klusmann Department of Electronics Engineering, Mechatronics Engineering, Faculty of Engineering, Universidad Peruana de Ciencias Aplicadas, Santiago de Surco 15023, Peru
  • Carlos Raymundo Department of Electronics Engineering, R&D Lab. in Emerging Technologies, Faculty of Engineering, Universidad Peruana de Ciencias Aplicadas, Santiago de Surco 15023, Peru
  • Wilder Namay Department of Electronics Engineering, R&D Lab. in Emerging Technologies, Faculty of Engineering, Universidad Peruana de Ciencias Aplicadas, Santiago de Surco 15023, Peru
  • Gustavo Ronceros Engenharia de Energía, Universidade Federal de Integração Latino-americana (UNILA), Foz do Iguaçu, PR, 85870-650, Brazil

DOI:

https://doi.org/10.37934/cfdl.17.6.5768

Keywords:

Cryogenic system, swirl effect, jet atomizers, VoF interface model, k-e turbulence model

Abstract

The present article delves into the comprehensive study of internal flow dynamics within a cryogenic chamber used for freezing food with high water percent. For cryogenic freezing is necessary to reduce temperature extremely and maintain a uniform distribution, different behaviours may cause structural damages on food. This is because the chamber comprises a circular-sectioned tunnel or chamber coupled with a set of Jet-type atomizers for the injection of liquid nitrogen. The internal flow, predominantly consisting of liquid nitrogen, necessitates prolonged residency within the chamber to uniformly and effectively cool or freeze food traversing its interior. Consequently, the primary aim is to extend the cryogenic fluid's residence time, achieved by strategically decelerating the flow. This deceleration is orchestrated through the strategic injection of the fluid to induce a swirling or vortex effect. The formation of this effect is meticulously executed by positioning the atomizers at periodic intervals around the internal walls of the cylindrical chamber, ensuring a prolonged recirculation of the internal flow. This research endeavour is further augmented by a comprehensive numerical analysis of swirling flow dynamics and associated parameters such as temperature, velocity, pressure and nitrogen-liquid interface. Leveraging the robust capabilities of CFD ANSYS software (Computational Fluid Dynamics), this analysis incorporates sophisticated models including the Volume of Fluid (VOF) model and the k-epsilon turbulence model. Additionally, the construction of a three-dimensional hexahedral mesh, facilitated by ICEM CFD software, adds depth and precision to the numerical simulations. The culmination of this study lies in the profound comprehension of internal flow behaviour and its intrinsic correlation with the design intricacies of the cryogenic system. Variations in nitrogen injection pressures and the strategic deployment of atomizers around the chamber serve as pivotal parameters for elucidating the system's optimal design

Downloads

Author Biographies

Ian Arriaga, Department of Electronics Engineering, Mechatronics Engineering, Faculty of Engineering, Universidad Peruana de Ciencias Aplicadas, Santiago de Surco 15023, Peru

ianarriaga2000@hotmail.com

Jasuo Sayán, Department of Electronics Engineering, Mechatronics Engineering, Faculty of Engineering, Universidad Peruana de Ciencias Aplicadas, Santiago de Surco 15023, Peru

u201924583@upc.edu.pe

Julio Ronceros, Department of Electronics Engineering, R&D Lab. in Emerging Technologies, Faculty of Engineering, Universidad Peruana de Ciencias Aplicadas, Santiago de Surco 15023, Peru

Julio.ronceros@upc.pe

Mirko Klusmann, Department of Electronics Engineering, Mechatronics Engineering, Faculty of Engineering, Universidad Peruana de Ciencias Aplicadas, Santiago de Surco 15023, Peru

hermann.klusmann@upc.pe

Carlos Raymundo, Department of Electronics Engineering, R&D Lab. in Emerging Technologies, Faculty of Engineering, Universidad Peruana de Ciencias Aplicadas, Santiago de Surco 15023, Peru

Carlos.Raymundo@upc.edu.pe

Wilder Namay, Department of Electronics Engineering, R&D Lab. in Emerging Technologies, Faculty of Engineering, Universidad Peruana de Ciencias Aplicadas, Santiago de Surco 15023, Peru

wilder.namay@upc.pe

Gustavo Ronceros, Engenharia de Energía, Universidade Federal de Integração Latino-americana (UNILA), Foz do Iguaçu, PR, 85870-650, Brazil

gustavo_ronceros@hotmail.com

References

Lee, Dongyoung, Youngsang You, Kacie KHY Ho, Yong Li and Soojin Jun. "Impact of supercooling storage on physical and chemical properties of yellowfin tuna (Thunnus albacares)." Journal of Food Engineering 373 (2024): 111818. https://doi.org/10.1016/j.jfoodeng.2023.111818 DOI: https://doi.org/10.1016/j.jfoodeng.2023.111818

Stellman, Jeanne Mager, ed. Encyclopaedia of occupational health and safety. Vol. 1. International Labour Organization, 1998.

Rodríguez, H. "Propiedades del Nitrógeno (N)." National Geographic, (2022).

Goswami, Tridib Kumar. "Role of cryogenics in food processing and preservation." International Journal of food engineering 6, no. 1 (2010). https://doi.org/10.2202/1556-3758.1771 DOI: https://doi.org/10.2202/1556-3758.1771

Potter, Norman N. and Joseph H. Hotchkiss. Food science. Springer Science & Business Media, 2012.

Evans, Judith A., ed. Frozen food science and technology. John Wiley & Sons, 2009. https://doi.org/10.1002/9781444302325 DOI: https://doi.org/10.1002/9781444302325

Rivas, Julio Roman Ronceros, Amilcar Porto Pimenta and Gustavo A. Ronceros Rivas. "Development of a mathematical model and 3D numerical simulation of the internal flow in a conical swirl atomizer." Atomization and Sprays 24, no. 2 (2014). https://doi.org/10.1615/AtomizSpr.2013007495 DOI: https://doi.org/10.1615/AtomizSpr.2013007495

Rivas, Julio R. Ronceros, Amílcar Porto Pimenta, Saulo Gomez Salcedo, Gustavo Adolfo Ronceros Rivas and Marie C. Giron Suazo. "Study of internal flow of a bipropellant swirl injector of a rocket engine." Journal of the Brazilian Society of Mechanical Sciences and Engineering 40 (2018): 1-16. https://doi.org/10.1007/s40430-018-1205-6 DOI: https://doi.org/10.1007/s40430-018-1205-6

Yunus, A. Cengel. Fluid Mechanics: Fundamentals And Applications (Si Units). Tata McGraw Hill Education Private Limited, 2010.

Lefebvre, Arthur H. and Vincent G. McDonell. Atomization and sprays. CRC press, (2017). https://doi.org/10.1201/9781315120911 DOI: https://doi.org/10.1201/9781315120911

Tucker, Gary S. "Food Biodeterioration and Preservation." (2008). https://doi.org/10.1002/9780470697849 DOI: https://doi.org/10.1002/9780470697849

Kokane, Rushikesh S., Chintamani R. Upadhye and Avesahemad SN Husainy. "A Review on Recent Techniques for Food Preservation." Asian Review of Mechanical Engineering 10, no. 2 (2021): 4-9. https://doi.org/10.51983/arme-2021.10.2.3009 DOI: https://doi.org/10.51983/arme-2021.10.2.3009

Patil, Shirin and Srikrishna Sahu. "Spray characterization in a multi-jet airblast injector with swirling air crossflow." Aerospace Science and Technology 132 (2023): 108085. https://doi.org/10.1016/j.ast.2022.108085 DOI: https://doi.org/10.1016/j.ast.2022.108085

Khavkin, Yuriy I. Theory and practice of swirl atomizers. CRC Press, 2003.

De Vehi Sarrazin, Josep Maria. "Mallado de geometrías complejas mediante CFD." Bachelor's thesis, Universitat Politècnica de Catalunya, 2016.

Ayala, Eduardo, Diego Rivera, Julio Ronceros, Nikolai Vinces and Gustavo Ronceros. "Design of a cryogenic duplex pressure-swirl atomizer through cfds for the cold conservation of marine products." Fluids 8, no. 10 (2023): 271. https://doi.org/10.3390/fluids8100271 DOI: https://doi.org/10.3390/fluids8100271

Rivas, Julio R. Ronceros, Amilcar Porto Pimenta and Wilmer Jara Velásquez. "Estudio y Simulación Numérica Tridimensional de los Principales Parámetros de Desempeño de Inyectores Centrífugos." Mecánica Computacional 31, no. 16 (2012): 2993-3005.

Al Mahmud, Suaib and Ahmad Faris Ismail. "Multiphase CFD Investigation on Convective Heat Transfer Enhancement for Turbulent Flow of Water-Al2O3 Nanofluid." CFD Letters 13, no. 10 (2021): 11-24. https://doi.org/10.37934/cfdl.13.10.1124 DOI: https://doi.org/10.37934/cfdl.13.10.1124

Hirt, Cyril W. and Billy D. Nichols. "Volume of fluid (VOF) method for the dynamics of free boundaries." Journal of computational physics 39, no. 1 (1981): 201-225. https://doi.org/10.1016/0021-9991(81)90145-5 DOI: https://doi.org/10.1016/0021-9991(81)90145-5

Pimenta, A. P. and A. R. Lima. "Analytical model for conical injector flows." In Proceedings of the International Congress Mechanical Engineering ABCM, Brasilia, Brazil, pp. 5-9. 2007.

Ronceros, Julio, Carlos Raymundo, Eduardo Ayala, Diego Rivera, Leonardo Vinces, Gustavo Ronceros and Gianpierre Zapata. "Study of Internal Flow in Open-End and Closed Pressure-Swirl Atomizers with Variation of Geometrical Parameters." Aerospace 10, no. 11 (2023): 930. https://doi.org/10.3390/aerospace10110930 DOI: https://doi.org/10.3390/aerospace10110930

Institute of Standards and Technology. "Saturation Properties for Nitrogen – Temperature Increments." NIST, (2024).

Fox, Robert W., Alan T. McDonald and Philip J. Pritchard. "Introduction to fluid mechanics, john wiley&sons." Inc., New York (1994).

Bayvel, L. and T. Orzechowski. “Liquid Atomization.” CRC Press, (2006).

Vijay, G. Arun, N. Shenbaga Vinayaga Moorthi and A. Manivannan. "Internal and external flow characteristics of swirl atomizers: a review." Atomization and sprays 25, no. 2 (2015). https://doi.org/10.1615/AtomizSpr.2014010219 DOI: https://doi.org/10.1615/AtomizSpr.2014010219

Downloads

Published

2024-12-31

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.