Numerical Solution for A Curvilinear Crack Phenomenon in Thermoelectric Bonded Materials Subjected to Mechanical Loadings

Authors

  • Muhammad Haziq Iqmal Mohd Nordin Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Khairum Hamzah Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Nik Mohd Asri Nik Long Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
  • Najiyah Safwa Khashi’ie Forecasting and Engineering Technology Analysis (FETA) Research Group, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Malaysia
  • Iskandar Waini Forecasting and Engineering Technology Analysis (FETA) Research Group, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Malaysia
  • Nurul Amira Zainal Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Malaysia
  • Sayed Kushairi Sayed Nordin Forecasting and Engineering Technology Analysis (FETA) Research Group, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Malaysia

DOI:

https://doi.org/10.37934/aram.113.1.2736

Keywords:

Thermoelectric, bonded materials, curvilinear crack, hypersingular integral equations, stress intensity factors

Abstract

In this study, a curvilinear crack phenomenon laying in the upper part of thermoelectric bonded materials subject to mechanical loadings is considered. A curvilinear crack problem in thermoelectric bonded materials subjected to shear stress is formulated. The modified complex potential (MCP) function method is used to formulate this crack phenomenon into the hypersingular integral equations (HSIEs) with the help of the continuity conditions of the resultant electric force and displacement electric function. The normal and tangential traction along the crack segment serves as the right-hand side of the integral equation. The HSIEs are solved numerically for the unknown crack opening displacement (COD) function, electric current density, and energy flux load using the appropriate quadrature formulas. The numerical solution presented the behavior of the dimensionless stress intensity factors (SIFs) at the crack tips which depend on the elastic constant’s ratio, the position of the crack, the electric conductivity, and the thermal expansion coefficients.

Author Biographies

Muhammad Haziq Iqmal Mohd Nordin, Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

m052210026@student.utem.edu.my

Khairum Hamzah, Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

khairum@utem.edu.my

Nik Mohd Asri Nik Long, Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

nmasri@upm.edu.my

Najiyah Safwa Khashi’ie, Forecasting and Engineering Technology Analysis (FETA) Research Group, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Malaysia

najiyah@utem.edu.my

Iskandar Waini, Forecasting and Engineering Technology Analysis (FETA) Research Group, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Malaysia

iskandarwaini@utem.edu.my

Nurul Amira Zainal, Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Malaysia

nurulamira@utem.edu.my

Sayed Kushairi Sayed Nordin, Forecasting and Engineering Technology Analysis (FETA) Research Group, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Malaysia

sayedkushairi@utem.edu.my

Downloads

Published

2024-01-22

How to Cite

Muhammad Haziq Iqmal Mohd Nordin, Khairum Hamzah, Nik Mohd Asri Nik Long, Najiyah Safwa Khashi’ie, Iskandar Waini, Nurul Amira Zainal, & Sayed Kushairi Sayed Nordin. (2024). Numerical Solution for A Curvilinear Crack Phenomenon in Thermoelectric Bonded Materials Subjected to Mechanical Loadings . Journal of Advanced Research in Applied Mechanics, 113(1), 27–36. https://doi.org/10.37934/aram.113.1.2736

Issue

Section

Articles