CFD Analysis in the Mesh Modified Gas Diffusion Layer of a Proton Exchange Membrane Fuel Cell (PEMFC)

Authors

  • Blandy Berenice Pamplona Solis Department of Systems and Computation, TECNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, 77013, Chetumal, Q. Roo, México
  • Julio César Cruz Argüello Department of Systems and Computation, TECNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, 77013, Chetumal, Q. Roo, México
  • Isaias May Canche Department of Systems and Computation, TECNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, 77013, Chetumal, Q. Roo, México
  • Leopoldo Gómez Barba Universidad de Guadalajara, Periférico Norte N° 799, Núcleo Universitario Los Belenes, C.P. 45100 Zapopan, Jalisco. México
  • Mayra Polett Gurrola CONACYT-Tecnológico Nacional de México/ I. T. de Chetumal, Av. Insurgentes 330, 77013, Chetumal, Q. Roo, México

DOI:

https://doi.org/10.37934/cfdl.16.1.5567

Keywords:

Fuel Cell, CFD, GDL, Post-process, Python, ParaView

Abstract

Computational Fluid Dynamics (CFD) software is well known for its application feasibility as well as reliable results in modeling electrochemical, thermal, and fluid transport processes. CFD has been used to investigate the phenomena involved in the operation of fuel cells, providing a large amount of data that must be analyzed to improve cell efficiency. This paper aims to demonstrate that programming can be used in the post-processing phase, using scripts in Python language to automate data analysis, based on the results of the simulation of oxygen transport in Polymer Electrolyte Membrane Fuel Cell (PEMFC). The OpenFOAM open-source CFD tool solved the fluid governing equations through the SIMPLE algorithm of three proposed Gas Diffusion Layer (GDL) case studies. In this work, an algorithm is presented to extract, compute and visualize the post-process results, supporting the GDL selection.

Author Biographies

Blandy Berenice Pamplona Solis, Department of Systems and Computation, TECNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, 77013, Chetumal, Q. Roo, México

blandy.ps@chetumal.tecnm.mx

Julio César Cruz Argüello, Department of Systems and Computation, TECNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, 77013, Chetumal, Q. Roo, México

julio.ca@chetumal.tecnm.mx

Isaias May Canche, Department of Systems and Computation, TECNM/ Instituto Tecnológico de Chetumal, Av. Insurgentes 330, 77013, Chetumal, Q. Roo, México

isaias.mc@chetumal.tecnm.mx

Leopoldo Gómez Barba, Universidad de Guadalajara, Periférico Norte N° 799, Núcleo Universitario Los Belenes, C.P. 45100 Zapopan, Jalisco. México

leopoldo.gbarba@academicos.udg.mx

Mayra Polett Gurrola, CONACYT-Tecnológico Nacional de México/ I. T. de Chetumal, Av. Insurgentes 330, 77013, Chetumal, Q. Roo, México

mayra.mp@chetumal.tecnm.mx

References

Colleen Spiegel. PEM Fuel Cell: Modeling and Simulation using MATLAB. Elsevier; 2008. https://doi.org/10.1016/B978-012374259-9.50006-9.

Shah, R K. 2007. “Introduction to Fuel Cells.” In Recent Trends in Fuel Cell Science and Technology, edited by Suddhasatwa Basu, 1–9. New York, NY: Springer New York. https://doi.org/10.1007/978-0-387-68815-2_1.

Barbir, Frano. 2013. PEM Fuel Cells : Theory and Practice. Second Ed. Sustainable World Series. Boston: Academic Press. https://doi.org/https://doi.org/10.1016/C2011-0-06706-6.

Berning, T., D.M. Lu, and N. Djilali. 2002. “Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell.” Journal of Power Sources 106 (1–2): 284–94. https://doi.org/10.1016/S0378-7753(01)01057-6.

Hossain, Mamdud, Sheikh Zahidul Islam, and Patricia Pollard. "Investigation of species transport in a gas diffusion layer of a polymer electrolyte membrane fuel cell through two-phase modelling." Renewable energy 51 (2013): 404-418. https://doi.org/10.1016/j.renene.2012.10.008.

Tu, Jiyuan, Guan Heng Yeoh, and Chaoqun Liu. 2019. Computational Fluid Dynamics. London, UNITED KINGDOM: Elsevier. https://doi.org/10.1016/C2015-0-06135-4.

Liu, Xiaofeng, and Jie Zhang. "Computational Fluid Dynamics: Applications in Water, Wastewater, and Stormwater Treatment: EWRI Computational Fluid Dynamics Task Committee." In Computational Fluid Dynamics: Applications in Water, Wastewater and Stormwater Treatment, pp. 1-224. American Society of Civil Engineers (ASCE), 2019.https://doi.org/https://doi.org/10.1061/9780784415313.

Fontalvo, Victor, Danny Illera, Humberto Gómez, and Marco Sanjuan. "CFD Multiphysics Modeling and Performance Evaluation of PEM Fuel Cells." In ASME International Mechanical Engineering Congress and Exposition, vol. 58417, p. V006T08A067. American Society of Mechanical Engineers, 2017.https://doi.org/10.1115/IMECE2017-72160.

Haghayegh, Marjan, Mohammad H. Eikani, and Soosan Rowshanzamir. "Modeling and simulation of a proton exchange membrane fuel cell using computational fluid dynamics." International Journal of Hydrogen Energy 42, no. 34 (2017): 21944-21954.https://doi.org/10.1016/j.ijhydene.2017.07.098.

Ionescu, Viorel, and Nicolae Buzbuchi. 2017. “PEMFC Two-Dimensional FEM Model to Study the Effects of Gas Flow Channels Geometry on Reactant Species Transport.” Energy Procedia 112 (October 2016): 390–97. https://doi.org/10.1016/j.egypro.2017.03.1085.

Meng, Hua, and Chao Yang Wang. 2004. “Large-Scale Simulation of Polymer Electrolyte Fuel Cells by Parallel Computing.” Chemical Engineering Science 59 (16): 3331–43. https://doi.org/10.1016/j.ces.2004.03.039.

Yin, Yan, Xuefeng Wang, Xiang Shangguan, Junfeng Zhang, and Yanzhou Qin. 2018. “Numerical Investigation on the Characteristics of Mass Transport and Performance of PEMFC with Baffle Plates Installed in the Flow Channel.” International Journal of Hydrogen Energy 43 (16): 8048–62. https://doi.org/10.1016/j.ijhydene.2018.03.037.

Eldrid, Sacheverel, Mehrdad Shahnam, Michael T. Prinkey, and Zhirui Dong. 2003. “3D Modeling of Polymer Electrolyte Membrane Fuel Cells.” In Fuel Cell Science, Engineering and Technology, 195–202. https://doi.org/10.1115/fuelcell2003-1719.

Le, Anh Dinh, and Biao Zhou. 2009. “A Generalized Numerical Model for Liquid Water in a Proton Exchange Membrane Fuel Cell with Interdigitated Design.” Journal of Power Sources 193 (2): 665–83. https://doi.org/10.1016/j.jpowsour.2009.04.011.

Bednarek, Tomasz, and Georgios Tsotridis. 2017. “Issues Associated with Modelling of Proton Exchange Membrane Fuel Cell by Computational Fluid Dynamics.” Journal of Power Sources 343: 550–63. https://doi.org/10.1016/j.jpowsour.2017.01.059.

Iranzo, Alfredo, Miguel Muñoz, Felipe Rosa, and Javier Pino. 2010. “Numerical Model for the Performance Prediction of a PEM Fuel Cell. Model Results and Experimental Validation.” International Journal of Hydrogen Energy 35 (20): 11533–50. https://doi.org/10.1016/j.ijhydene.2010.04.129.

Kahveci, Elif Eker, and Imdat Taymaz. 2018. “Assessment of Single-Serpentine PEM Fuel Cell Model Developed by Computational Fluid Dynamics.” Fuel 217 (April): 51–58. https://doi.org/10.1016/j.fuel.2017.12.073.

Zhao, Jian, and Xianguo Li. 2019. “Oxygen Transport in Polymer Electrolyte Membrane Fuel Cells Based on Measured Electrode Pore Structure and Mass Transport Properties.” Energy Conversion and Management 186 (April): 570–85. https://doi.org/10.1016/j.enconman.2019.02.042.

Li, Shian, and Bengt Sundén. 2017. “Three-Dimensional Modeling and Investigation of High Temperature Proton Exchange Membrane Fuel Cells with Metal Foams as Flow Distributor.” International Journal of Hydrogen Energy 42 (44): 27323–33. https://doi.org/10.1016/j.ijhydene.2017.09.014.

Liu, Hui-Chung, Chien-Hsiung Lee, Yao-Hua Shiu, Ryey-Yi Lee, and Wei-Mon Yan. 2007. “Performance Simulation for an Anode-Supported SOFC Using Star-CD Code.” Journal of Power Sources 167 (2): 406–12. https://doi.org/10.1016/j.jpowsour.2007.02.033.

Vetter, Roman, and Jürgen O Schumacher. 2019. “Free Open Reference Implementation of a Two-Phase PEM Fuel Cell Model.” Computer Physics Communications 234 (January): 223–34. https://doi.org/10.1016/j.cpc.2018.07.023.

Novaresio, Valerio, María García-Camprubí, Salvador Izquierdo, Pietro Asinari, and Norberto Fueyo. 2012. “An Open-Source Library for the Numerical Modeling of Mass-Transfer in Solid Oxide Fuel Cells.” Computer Physics Communications 183 (1): 125–46. https://doi.org/10.1016/j.cpc.2011.08.003.

Kone, Jean-Paul, Xinyu Zhang, Yuying Yan, Guilin Hu, and Goodarz Ahmadi. 2017. “Three-Dimensional Multiphase Flow Computational Fluid Dynamics Models for Proton Exchange Membrane Fuel Cell: A Theoretical Development.” The Journal of Computational Multiphase Flows 9 (1): 3–25. https://doi:10.1177/1757482X17692341.

Lozano, A., L. Valiño, F. Barreras, and R. Mustata. 2008. “Fluid Dynamics Performance of Different Bipolar Plates. Part II. Flow through the Diffusion Layer.” Journal of Power Sources 179 (2): 711–22. https://doi.org/10.1016/j.jpowsour.2007.12.095.

Beale, Steven B., Hae Won Choi, Jon G. Pharoah, Helmut K. Roth, Hrvoje Jasak, and Dong Hyup Jeon. 2016. “Open-Source Computational Model of a Solid Oxide Fuel Cell.” Computer Physics Communications 200: 15–26. https://doi.org/http://dx.doi.org/10.1016/j.cpc.2015.10.007.

Imbrioscia, Gerardo Martín, and Héctor José Fasoli. 2014. “Simulation and Study of Proposed Modifications over Straight-Parallel Flow Field Design.” International Journal of Hydrogen Energy 39 (16): 8861–67. https://doi.org/10.1016/j.ijhydene.2013.11.079.

Wang, Jiatang, Jinliang Yuan, and Bengt Sundén. 2017. “Modeling of Inhomogeneous Compression Effects of Porous GDL on Transport Phenomena and Performance in PEM Fuel Cells.” International Journal of Energy Research 41 (7): 985–1003. https://doi.org/10.1002/er.3687.

Kim, Jin Hyun, and Woo Tae Kim. 2018. “Numerical Investigation of Gas-Liquid Two-Phase Flow inside PEMFC Gas Channels with Rectangular and Trapezoidal Cross Sections.” Energies 11 (6): 1403. https://doi.org/10.3390/en11061403.

Kone, Jean-Paul, Xinyu Zhang, Yuying Yan, and Stephen Adegbite. 2018. “An Open-Source Toolbox for PEM Fuel Cell Simulation.” Computation 6 (2): 38. https://doi.org/10.3390/computation6020038.

Sivertsen, B, and N Djilali. 2005. “CFD-Based Modelling of Proton Exchange Membrane Fuel Cells.” Journal of Power Sources 141 (1): 65–78. https://doi.org/10.1016/j.jpowsour.2004.08.054.

Dutta, S., S. Shimpalee, and J. W. Van Zee. 2000. “Three-Dimensional Numerical Simulation of Straight Channel PEM Fuel Cells.” Journal of Applied Electrochemistry 30 (2): 135–46. https://doi.org/https://doi.org/10.1023/A:1003964201327.

Herlambang, Yusuf Dewantoro, Fatahul Arifin, K. Kurnianingsih, Totok Prasetyo, and Anis Roihatin. 2021. “Numerical Analysis of Phenomena Transport of a Proton Exchange Membrane (PEM) Fuel Cell.” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 80 (2): 127–35. https://doi.org/10.37934/arfmts.80.2.127135.

Oro, Jesus Manuel F Fernandez. 2015. Técnicas numéricas en ingeniería de fluidos: introducción a la dinámica de fluidos computacional (CFD) por el método de volúmenes finitos. Edited by Primera Ed. Editorial Reverté. https://elibro.net/es/lc/udg/titulos/46736.

Versteeg, H K, and W Malalasekera. 2007. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Edited by Pearson Education Limited. Second Ed. Pearson Education Limited.

Thévenin, Dominique, and Gábor Janiga. 2008. Optimization and Computational Fluid Dynamics. Edited by Dominique Thévenin and Gábor Janiga. Fluid Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-72153-6.

Anderson, J., E. Dick, G. Degrez, J. Degroote, R. Grundmann, and J. Vierendeels. 2009. Computational Fluid Dynamics. Edited by John F. Wendt. Third Ed. Vol. 28. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-85056-4.

Hassan, Y. 2017. “An Overview of Computational Fluid Dynamics and Nuclear Applications.” In Thermal-Hydraulics of Water Cooled Nuclear Reactors, 1st Ed, 729–829. Elsevier. https://doi.org/10.1016/B978-0-08-100662-7.00012-9.

Mukha, Timofey. 2018. “Turbulucid: A Python Package for Post-Processing of Fluid Flow Simulations.” Journal of Open Research Software 6 (October): 1–5. https://doi.org/10.5334/jors.213.

Bao, Zhiming, Zhiqiang Niu, and Kui Jiao. 2019. “Analysis of Single- and Two-Phase Flow Characteristics of 3-D Fine Mesh Flow Field of Proton Exchange Membrane Fuel Cells.” Journal of Power Sources 438 (July): 226995. https://doi.org/10.1016/j.jpowsour.2019.226995.

2018. OpenFOAM. 2018. The Open Source CFD Toolbox User Guide. OpenCFD.

Xu, Jiang-Hai, Han-Zhang Yan, Ben-Xi Zhang, Quan Ding, Kai-Qi Zhu, Yan-Ru Yang, Zhong-Min Wan, Duu-Jong Lee, Xiao-Dong Wang, and Zheng-Kai Tu. 2023. “Multi-Criteria Evaluation and Optimization of PEM Fuel Cell Degradation System.” Applied Thermal Engineering 227: 120389. https://doi.org/10.1016/j.applthermaleng.2023.120389.

Downloads

Published

2023-11-29

How to Cite

Blandy Berenice Pamplona Solis, Julio César Cruz Argüello, Isaias May Canche, Leopoldo Gómez Barba, & Mayra Polett Gurrola. (2023). CFD Analysis in the Mesh Modified Gas Diffusion Layer of a Proton Exchange Membrane Fuel Cell (PEMFC) . CFD Letters, 16(1), 55–67. https://doi.org/10.37934/cfdl.16.1.5567

Issue

Section

Articles